Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
2.
Front Mol Biosci ; 9: 1051471, 2022.
Article in English | MEDLINE | ID: covidwho-2229578

ABSTRACT

Introduction: Infection by SARS-CoV-2 and subsequent COVID-19 can cause viral sepsis. We investigated plasma protease activity patterns in COVID-19-induced sepsis with bacterial superinfection, as well as plasma proteomics and peptidomics in order to assess the possible implications of enhanced proteolysis on major protein systems (e.g., coagulation). Methods: Patients (=4) admitted to the intensive care units (ICUs) at the University of California, San Diego (UCSD) Medical Center with confirmed positive test for COVID-19 by real-time reverse transcription polymerase chain reaction (RT-PCR) were enrolled in a study approved by the UCSD Institutional Review Board (IRB# 190699, Protocol #20-0006). Informed consent was obtained for the collection of blood samples and de-identified use of the data. Blood samples were collected at multiple time points and analyzed to quantify a) the circulating proteome and peptidome by mass spectrometry; b) the aminopeptidase activity in plasma; and c) the endopeptidase activity in plasma using fluorogenic substrates that are cleaved by trypsin-like endopeptidases, specific clotting factors and plasmin. The one patient who died was diagnosed with bacterial superinfection on day 7 after beginning of the study. Results: Spikes in protease activity (factor VII, trypsin-like activity), and corresponding increases in the intensity of peptides derived by hydrolysis of plasma proteins, especially of fibrinogen degradation products and downregulation of endogenous protease inhibitors were detected on day 7 for the patient who died. The activity of the analyzed proteases was stable in survivors. Discussion: The combination of multiomics and enzymatic activity quantification enabled to i) hypothesize that elevated proteolysis occurs in COVID-19-induced septic shock with bacterial superinfection, and ii) provide additional insight into malfunctioning protease-mediated systems, such as hemostasis.

3.
Cell Rep Med ; 4(2): 100935, 2023 02 21.
Article in English | MEDLINE | ID: covidwho-2211655

ABSTRACT

Transcription factor programs mediating the immune response to coronavirus disease 2019 (COVID-19) are not fully understood. Capturing active transcription initiation from cis-regulatory elements such as enhancers and promoters by capped small RNA sequencing (csRNA-seq), in contrast to capturing steady-state transcripts by conventional RNA-seq, allows unbiased identification of the underlying transcription factor activity and regulatory pathways. Here, we profile transcription initiation in critically ill COVID-19 patients, identifying transcription factor motifs that correlate with clinical lung injury and disease severity. Unbiased clustering reveals distinct subsets of cis-regulatory elements that delineate the cell type, pathway-specific, and combinatorial transcription factor activity. We find evidence of critical roles of regulatory networks, showing that STAT/BCL6 and E2F/MYB regulatory programs from myeloid cell populations are activated in patients with poor disease outcomes and associated with COVID-19 susceptibility genetic variants. More broadly, we demonstrate how capturing acute, disease-mediated changes in transcription initiation can provide insight into the underlying molecular mechanisms and stratify patient disease severity.


Subject(s)
COVID-19 , Transcription Factors , Humans , Transcription Factors/genetics , Gene Expression Regulation , Leukocytes/metabolism , Intensive Care Units
4.
Clin Infect Dis ; 74(3): 479-489, 2022 02 11.
Article in English | MEDLINE | ID: covidwho-1684541

ABSTRACT

BACKGROUND: Increased inflammation has been well defined in coronavirus disease 2019 (COVID-19), while definitive pathways driving severe forms of this disease remain uncertain. Neutrophils are known to contribute to immunopathology in infections, inflammatory diseases, and acute respiratory distress syndrome, a primary cause of morbidity and mortality in COVID-19. Changes in neutrophil function in COVID-19 may give insight into disease pathogenesis and identify therapeutic targets. METHODS: Blood was obtained serially from critically ill COVID-19 patients for 11 days. Neutrophil extracellular trap formation (NETosis), oxidative burst, phagocytosis, and cytokine levels were assessed. Lung tissue was obtained immediately postmortem for immunostaining. PubMed searches for neutrophils, lung, and COVID-19 yielded 10 peer-reviewed research articles in English. RESULTS: Elevations in neutrophil-associated cytokines interleukin 8 (IL-8) and interleukin 6, and general inflammatory cytokines IFN-inducible protien-19, granulocyte macrophage colony-stimulating factor (GM-CSF), interleukin 1ß, interleukin 10, and tumor necrosis factor, were identified both at first measurement and across hospitalization (P < .0001). COVID-19 neutrophils had exaggerated oxidative burst (P < .0001), NETosis (P < .0001), and phagocytosis (P < .0001) relative to controls. Increased NETosis correlated with leukocytosis and neutrophilia, and neutrophils and NETs were identified within airways and alveoli in lung parenchyma of 40% of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected lungs available for examination (2 of 5). While elevations in IL-8 and absolute neutrophil count correlated with disease severity, plasma IL-8 levels alone correlated with death. CONCLUSIONS: Literature to date demonstrates compelling evidence of increased neutrophils in the circulation and lungs of COVID-19 patients. Importantly, neutrophil quantity and activation correlates with severity of disease. Similarly, our data show that circulating neutrophils in COVID-19 exhibit an activated phenotype with enhanced NETosis and oxidative burst.


Subject(s)
COVID-19 , Extracellular Traps , Critical Illness , Humans , Neutrophil Activation , Neutrophils , Phenotype , SARS-CoV-2
5.
Crit Care Explor ; 3(5): e0393, 2021 May.
Article in English | MEDLINE | ID: covidwho-1243538

ABSTRACT

OBJECTIVES: To describe a ventilator and extracorporeal membrane oxygenation management strategy for patients with acute respiratory distress syndrome complicated by bronchopleural and alveolopleural fistula with air leaks. DESIGN SETTING AND PARTICIPANTS: Case series from 2019 to 2020. Single tertiary referral center-University of California, San Diego. Four patients with various etiologies of acute respiratory distress syndrome, including influenza, methicillin-resistant Staphylococcus aureus pneumonia, e-cigarette or vaping product use-associated lung injury, and coronavirus disease 2019, complicated by bronchopleural and alveolopleural fistula and chest tubes with air leaks. MEASUREMENTS AND MAIN RESULTS: Bronchopleural and alveolopleural fistula closure and survival to discharge. All four patients were placed on extracorporeal membrane oxygenation with ventilator settings even lower than Extracorporeal Life Support Organization guideline recommended ultraprotective lung ventilation. The patients bronchopleural and alveolopleural fistulas closed during extracorporeal membrane oxygenation and minimal ventilatory support. All four patients survived to discharge. CONCLUSIONS: In patients with acute respiratory distress syndrome and bronchopleural and alveolopleural fistula with persistent air leaks, the use of extracorporeal membrane oxygenation to allow for even lower ventilator settings than ultraprotective lung ventilation is safe and feasible to mediate bronchopleural and alveolopleural fistula healing.

6.
J Cardiothorac Vasc Anesth ; 35(10): 2869-2874, 2021 10.
Article in English | MEDLINE | ID: covidwho-1243324

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic began in the United States around March 2020. Because of limited access to extracorporeal membrane oxygenation (ECMO) in the authors' region, a mobile ECMO team was implemented by April 2020 to serve patients with COVID-19. Several logistical and operational needs were assessed and addressed to ensure a successful program, including credentialing, equipment management, and transportation. A multidisciplinary team was included in the planning, decision-making, and implementation of the mobile ECMO. From April 2020 to January 2021, mobile ECMO was provided to 22 patients in 13 facilities across four southern California counties. The survival to hospital discharge of patients with COVID-19 who received mobile ECMO was 52.4% (11 of 21) compared with 45.2% (14 of 31) for similar patients cannulated in-house. No significant patient or transportation complications occurred during mobile ECMO. Neither the ECMO nor transport teams experianced unprotected exposures to or infections with severe acute respiratory syndrome coronavirus 2. Herein, the implementation of the mobile ECMO team is reviewed, and patient characteristics and outcomes are described.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Humans , Pandemics , SARS-CoV-2 , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL